The Horseshoe Estimator for Sparse Signals

نویسندگان

  • Carlos M. Carvalho
  • Nicholas G. Polson
  • James G. Scott
چکیده

This paper proposes a new approach to sparse-signal detection called the horseshoe estimator. We show that the horseshoe is a close cousin of the lasso in that it arises from the same class of multivariate scale mixtures of normals, but that it is almost universally superior to the double-exponential prior at handling sparsity. A theoretical framework is proposed for understanding why the horseshoe is a better default “sparsity” estimator than those that arise from powered-exponential priors. Comprehensive numerical evidence is presented to show that the difference in performance can often be large. Most importantly, we show that the horseshoe estimator corresponds quite closely to the answers one would get if one pursued a full Bayesian model-averaging approach using a “two-groups” model: a point mass at zero for noise, and a continuous density for signals. Surprisingly, this correspondence holds both for the estimator itself and for the classification rule induced by a simple threshold applied to the estimator. We show how the resulting thresholded horseshoe can also be viewed as a novel Bayes multiple-testing procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handling Sparsity via the Horseshoe

This paper presents a general, fully Bayesian framework for sparse supervised-learning problems based on the horseshoe prior. The horseshoe prior is a member of the family of multivariate scale mixtures of normals, and is therefore closely related to widely used approaches for sparse Bayesian learning, including, among others, Laplacian priors (e.g. the LASSO) and Student-t priors (e.g. the rel...

متن کامل

Sparse Estimation with Generalized Beta Mixture and the Horseshoe Prior

In this paper, the use of the Generalized Beta Mixture (GBM) and Horseshoe distributions as priors in the Bayesian Compressive Sensing framework is proposed. The distributions are considered in a two-layer hierarchical model, making the corresponding inference problem amenable to Expectation Maximization (EM). We present an explicit, algebraic EM-update rule for the models, yielding two fast an...

متن کامل

Bayesian Robust Regression with the Horseshoe+ Estimator

The horseshoe+ estimator for Gaussian linear regression models is a novel extension of the horseshoe estimator that enjoys many favourable theoretical properties. We develop the first efficient Gibbs sampling algorithm for the horseshoe+ estimator for linear and logistic regression models. Importantly, our sampling algorithm incorporates robust data models that naturally handle non-Gaussian dat...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008